Orbifold Morse complex and Lagrangian Floer homology for toric orbifolds

Cheol-Hyun Cho

Seoul National University
Seoul, Korea

EACAT 4
Dec 5, 2011
Outline

1. Orbifolds and Morse-Smale-Witten complex
 - Orbifolds
 - Morse-Smale-Witten complex on orbifolds

2. Lagrangian Floer homology for toric orbifolds
 - Symplectic toric orbifolds
 - Orbifold Lagrangian Floer homology
 - Orbifold holomorphic discs
 - Ingredients for computations
 - Classification of orbifold holomorphic discs
Orbifold X

- Locally a quotient space of \mathbb{R}^n by an effective finite group action G.

Example: Global quotient: M/G.

Example: Tear drop

Let X be a quotient space (orbit space) of X.

Morse function on orbifold: invariant Morse function on uniformizing covers.

Objective: Find a Morse-Smale-Witten complex of X, computing homology $H(X)$.

Cho (SNU)

Lagrangian Floer homology for Toric orbifolds
Orbifold X

- Locally a quotient space of \mathbb{R}^n by an effective finite group action G.
- Example: Global quotient: M/G.
 Orbifold X

- Locally a quotient space of \mathbb{R}^n by an effective finite group action G.
- Example: Global quotient : M/G.
- Example: Tear drop
Orbifold X

- Locally a quotient space of \mathbb{R}^n by an effective finite group action G.
- Example: Global quotient: M/G.
- Example: Tear drop
- Let X be a quotient space (orbit space) of X.

Morse function on orbifold: invariant Morse function on uniformizing covers.
Objective: Find a Morse-Smale-Witten complex of X, computing $H(X)$.

Cho (SNU)

Lagrangian Floer homology for Toric orbifolds
Orbifold X

- Locally a quotient space of \mathbb{R}^n by an effective finite group action G.
- Example: Global quotient : M/G.
- Example: Tear drop
- Let X be a quotient space (orbit space) of X.
- Morse function on orbifold: invariant Morse function on uniformizing covers.
Orbifold X

- Locally a quotient space of \mathbb{R}^n by an effective finite group action G.
- Example: Global quotient : M/G.
- Example: Tear drop
- Let X be a quotient space (orbit space) of X.
- Morse function on orbifold: invariant Morse function on uniformizing covers.
- Objective: Find a Morse-Smale-Wittlen complex of X, computing homology $H(X)$.
Morse complex on orbifolds (joint with Hansol Hong)

- Morse complex is generated by Critical points $\bigoplus_{p \in \text{Crit}(f)} <p>$, whose differential is by counting isolated gradient flows.
Morse complex on orbifolds (joint with Hansol Hong)

- Morse complex is generated by Critical points $\bigoplus_{p \in \text{Crit}(f)} < p >$, whose differential is by counting isolated gradient flows.

- For a global quotient M/G, define G-action on critical points by
 $$g \cdot < p > = < g \cdot p >,$$

 Then, G-invariant part of Morse complex of M does NOT produce the homology of M/G.

Example of a Heart with $\mathbb{Z}/2\mathbb{Z}$-action.

0 $\rightarrow < p + q > \rightarrow < r > \rightarrow < s > \rightarrow 0$
Morse complex on orbifolds (joint with Hansol Hong)

- Morse complex is generated by Critical points $\bigoplus_{p \in \text{Crit}(f)} < p >$, whose differential is by counting isolated gradient flows.

For a global quotient M/G, define G-action on critical points by

$$g \cdot < p > = < g \cdot p >,$$

Then, G-invariant part of Morse complex of M does NOT produce the homology of M/G.

Example of a Heart with $\mathbb{Z}/2\mathbb{Z}$-action.

$$0 \rightarrow < p + q > \rightarrow < r > \rightarrow < s > \rightarrow 0$$
But the $\mathbb{Z}/2\mathbb{Z}$ quotient space is homeomorphic to a sphere.
But the $\mathbb{Z}/2\mathbb{Z}$ quotient space is homeomorphic to a sphere.

New phenomenon 1: there are two kinds of critical points.
But the $\mathbb{Z}/2\mathbb{Z}$ quotient space is homeomorphic to a sphere.

New phenomenon 1: there are two kinds of critical points.

When passing through r, topology of the quotient space does not change.
But the $\mathbb{Z}/2\mathbb{Z}$ quotient space is homeomorphic to a sphere.

New phenomenon 1: there are two kinds of critical points.

When passing through r, topology of the quotient space does not change.

Critical point is called Orientable, if group action preserves orientation of its unstable set. (Non-orientable otherwise)
But the \(\mathbb{Z}/2\mathbb{Z} \) quotient space is homeomorphic to a sphere.

New phenomenon 1: there are two kinds of critical points.

When passing through \(r \), topology of the quotient space does not change.

Critical point is called Orientable, if group action preserves orientation of its unstable set. (Non-orientable otherwise)

When passing through non-orientable critical point, the topology does not change (of the sublevel set of quotient space)
We consider chain complex generated by orientable critical points.
We consider chain complex generated by orientable critical points. For global quotient M/G, we can equivalently define G action of critical points as that of $\langle p \rangle \otimes \Lambda^\mu T_p W^-(p)$.
We consider chain complex generated by orientable critical points.

For global quotient M/G, we can equivalently define G action of critical points as that of $<p> \otimes \wedge^\mu T_p W^-(p)$.

Then the G-invariant part of the Morse complex of M is the Morse complex for M/G, whose homology is $H_*(M/G)$.
New Phenomenon 2

- For smooth manifold, broken trajectory of gradient flows between index difference 2, is a limit of unique family of smooth gradient flows.
New Phenomenon 2

- For smooth manifold, broken trajectory of gradient flows between index difference 2, is a limit of unique family of smooth gradient flows.
- For orbifolds, it can be a limit of several families.

![Diagram](image-url)
New Phenomenon 2

- For smooth manifold, broken trajectory of gradient flows between index difference 2, is a limit of unique family of smooth gradient flows.
- For orbifolds, it can be a limit of several families.

Lifts of gradient flows can be paired in several ways.
Let f be a Morse-Smale function on orbifold X.

Theorem

We have $\partial^2 = 0$.

If f is self-indexing, then its homology is isomorphic to $H_\bullet(X, \mathbb{R})$.

Cho (SNU)
Lagrangian Floer homology for Toric orbifolds
EACAT 4 8 / 18
Let f be a Morse-Smale function on orbifold X.

Define a complex, generated by ORIENTABLE critical point.

$$C_i(X) = \bigoplus_{\mu(p) = i, \text{orientable}} \mathbb{R} < \bar{p} >.$$
Let f be a Morse-Smale function on orbifold X.

Define a complex, generated by ORIENTABLE critical point.

$$
C_i(X) = \bigoplus_{\mu(p)=i, \text{orientable}} \mathbb{R} < p > .
$$

Define differential by counting gradient flow-lines with weights.

$$
\partial < p > = \sum_{\gamma} \epsilon(\gamma) \frac{|G_q|}{|G_{\gamma}|} < q > .
$$

Theorem

We have $\partial^2 = 0$.

If f is self-indexing, then its homology is isomorphic to $H^\bullet(X, \mathbb{R})$.

Cho (SNU)
Lagrangian Floer homology for Toric orbifolds
Let \(f \) be a Morse-Smale function on orbifold \(X \).

Define a complex, generated by ORIENTABLE critical point.

\[
C_i(X) = \bigoplus_{\mu(\bar{p}) = i, \text{orientable}} \mathbb{R} < \bar{p} >.
\]

Define differential by counting gradient flow-lines with weights.

\[
\partial < \bar{p} > = \sum_{\gamma} \epsilon(\gamma) \frac{|G_q|}{|G_\gamma|} < \bar{q} >.
\]

Theorem

We have \(\partial^2 = 0 \).

If \(f \) is self-indexing, then its homology is isomorphic to \(H_\bullet(X, \mathbb{R}) \).
Symplectic toric manifolds

- Symplectic toric manifolds \leftrightarrow Delzant polytope
Symplectic toric manifolds

- Symplectic toric manifolds \leftrightarrow Delzant polytope
- Delzant polytope is simple rational smooth polytope.
Symplectic toric manifolds

- Symplectic toric manifolds \longleftrightarrow Delzant polytope
- Delzant polytope is simple rational smooth polytope.
- Example.
Symplectic toric manifolds

- Symplectic toric manifolds \leftrightarrow Delzant polytope
- Delzant polytope is simple rational smooth polytope.
- Example.
- simple: n facets meet at a vertex
Symplectic toric manifolds

- Symplectic toric manifolds \leftrightarrow Delzant polytope
- Delzant polytope is simple rational smooth polytope.
- Example.
- simple: n facets meet at a vertex
- rational: normal vectors by lattice vectors
Symplectic toric manifolds \leftrightarrow \text{Delzant polytope}

- Delzant polytope is simple rational smooth polytope.
- Example.
 - simple: n facets meet at a vertex
 - rational: normal vectors by lattice vectors
 - smooth: normal vectors of facets meeting at a vertex form \mathbb{Z}-basis.
Theorem (Lerman-Tolman)

Symplectic toric orbifolds \leftrightarrow labeled simple rational polytope.
Symplectic toric orbifolds

Theorem (Lerman-Tolman)

Symplectic toric orbifolds \leftrightarrow labeled simple rational polytope.

- Polytope is the image of moment map for torus action T^n.

Lagrangian Floer homology for Toric orbifolds
Theorem (Lerman-Tolman)

Symplectic toric orbifolds \leftrightarrow labeled simple rational polytope.

- Polytope is the image of moment map for torus action T^n.
- Each codimension one facet has positive integer label.
Theorem (Lerman-Tolman)

Symplectic toric orbifolds \leftrightarrow labeled simple rational polytope.

- Polytope is the image of moment map for torus action T^n.
- Each codimension one facet has positive integer label.
- Example: Teardrop and more
Symplectic toric orbifolds

Theorem (Lerman-Tolman)

Symplectic toric orbifolds \leftrightarrow labeled simple rational polytope.

- Polytope is the image of moment map for torus action T^n.
- Each codimension one facet has positive integer label.
- Example: Teardrop and more
- Orbifold structure can be directly read from the polytope.
Symplectic toric orbifolds

Theorem (Lerman-Tolman)

Symplectic toric orbifolds \leftrightarrow labeled simple rational polytope.

- Polytope is the image of moment map for torus action T^n.
- Each codimension one facet has positive integer label.
- Example: Teardrop and more
- Orbifold structure can be directly read from the polytope.
- There exist an associated stacky fan (Borisov-Chen-Smith),
Lagrangian Floer homology

- Studies intersection properties of Lagrangian submanifold L_0 and L_1.

Due to Floer, Oh, Fukaya-Oh-Ohta-Ono

Chain complex is generated by intersection points $L_0 \cap L_1$

Differential is given by counting J-holomorphic strips connecting intersection points.

For Hamiltonian isotopy ϕ_H, $HF(L_0, \phi_H(L_1))$ is independent of H.

On S^2, equator L has $HF(L_0, \phi_L(L_1)) \sim = H^*(L)$.

Cho (SNU)
Lagrangian Floer homology

- Studies intersection properties of Lagrangian submanifold L_0 and L_1.
- Due to Floer, Oh, Fukaya-Oh-Ohta-Ono
Lagrangian Floer homology

- Studies intersection properties of Lagrangian submanifold L_0 and L_1.
- Due to Floer, Oh, Fukaya-Oh-Ohta-Ono
- Chain complex is generated by intersection points $L_0 \cap L_1$
Lagrangian Floer homology

- Studies intersection properties of Lagrangian submanifold L_0 and L_1.
- Due to Floer, Oh, Fukaya-Oh-Ohta-Ono
- Chain complex is generated by intersection points $L_0 \cap L_1$
- Differential is given by counting J-holomorphic strips connecting intersection points.
Lagrangian Floer homology

- Studies intersection properties of Lagrangian submanifold L_0 and L_1.
- Due to Floer, Oh, Fukaya-Oh-Ohta-Ono

Chain complex is generated by intersection points $L_0 \cap L_1$

Differential is given by counting J-holomorphic strips connecting intersection points.

For hamiltonian isotopy ϕ_H, $HF(L, \phi_H(L))$ is independent of H.
Lagrangian Floer homology

- Studies intersection properties of Lagrangian submanifold L_0 and L_1.
- Due to Floer, Oh, Fukaya-Oh-Ohta-Ono
- Chain complex is generated by intersection points $L_0 \cap L_1$
- Differential is given by counting J-holomorphic strips connecting intersection points.
- For hamiltonian isotopy ϕ_H, $HF(L, \phi_H(L))$ is independent of H.
- On S^2, equator L has $HF(L, \phi(L)) \cong H^*(L)$
Smooth Lagrangian Floer homology on orbifolds

- The rest of the talk is joint work with Mainak poddar.
The rest of the talk is joint work with Mainak poddar.

Let L be a smooth Lagrangian submanifold of orbifold X.
The rest of the talk is joint work with Mainak poddar.
Let L be a smooth Lagrangian submanifold of orbifold X.
Hamiltonian vector field X_H can be defined by $i_{X_H}\omega = dH$.
The rest of the talk is joint work with Mainak poddar.

Let L be a smooth Lagrangian submanifold of orbifold X.

Hamiltonian vector field X_H can be defined by $i_{X_H}\omega = dH$.

On uniformizing covers, X_H is invariant vector field.
The rest of the talk is joint work with Mainak poddar.

Let L be a smooth Lagrangian submanifold of orbifold X.

Hamiltonian vector field X_H can be defined by $i_{X_H}\omega = dH$.

On uniformizing covers, X_H is invariant vector field.

Hamiltonian diffeomorphism is equivariant on covers.
The rest of the talk is joint work with Mainak poddar.

Let L be a smooth Lagrangian submanifold of orbifold X.

Hamiltonian vector field X_H can be defined by $i_{X_H}\omega = dH$.

On uniformizing covers, X_H is invariant vector field

Hamiltonian diffeomorphism is equivariant on covers.

Local groups at p and at $\phi_H(p)$ are isomorphic.
The rest of the talk is joint work with Mainak poddar.
Let L be a smooth Lagrangian submanifold of orbifold X.

Hamiltonian vector field X_H can be defined by $i_{X_H} \omega = dH$.
On uniformizing covers, X_H is invariant vector field

Hamiltonian diffeomorphism is equivariant on covers.
Local groups at p and at $\phi_H(p)$ are isomorphic.

Example: Teardrop Orbifold
Smooth Lagrangian Floer homology on orbifolds

- The rest of the talk is joint work with Mainak poddar.
- Let \(L \) be a smooth Lagrangian submanifold of orbifold \(\mathcal{X} \).

Hamiltonian vector field \(X_H \) can be defined by \(i_{X_H} \omega = dH \).

- On uniformizing covers, \(X_H \) is invariant vector field.
- Hamiltonian diffeomorphism is equivariant on covers.
- Local groups at \(p \) and at \(\phi_H(p) \) are isomorphic.

Example: Teardrop Orbifold

- There exist a smooth Floer theory, just considering smooth holomorphic maps.
Chen-Ruan developed Orbifold Gromov-Witten theory for symplectic orbifold X.
Orbi-curves

- Chen-Ruan developed Orbifold Gromov-Witten theory for symplectic orbifold X
- Counts J-holomorphic maps from orbifold Riemann surface to X.

J-holomorphic maps are continuous maps whose lifts are J-holomorphic.
Chen-Ruan developed Orbifold Gromov-Witten theory for symplectic orbifold X.

Counts J-holomorphic maps from orbifold Riemann surface to X.

J-holomorphic maps are continuous maps whose lifts are J-holomorphic.
Orbi-curves

- Chen-Ruan developed Orbifold Gromov-Witten theory for symplectic orbifold X.
- Counts J-holomorphic maps from orbifold Riemann surface to X.
- J-holomorphic maps are continuous maps whose lifts are J-holomorphic.
- Maps should be good and representable.
Chen-Ruan developed Orbifold Gromov-Witten theory for symplectic orbifold X.
Counts J-holomorphic maps from orbifold Riemann surface to X.
J-holomorphic maps are continuous maps whose lifts are J-holomorphic.
Maps should be good and representable.

For Lagrangian Floer theory, we consider orbifold strips, orbifold discs.
Chen-Ruan developed Orbifold Gromov-Witten theory for symplectic orbifold X.

Counts J-holomorphic maps from orbifold Riemann surface to X.

J-holomorphic maps are continuous maps whose lifts are J-holomorphic.

Maps should be good and representable.

For Lagrangian Floer theory, we consider orbifold strips, orbifold discs.

They deform the smooth Floer theory by bulk deformation of twisted sectors.
For teardrop, there are orbifold holomorphic discs.
For teardrop, there are orbifold holomorphic discs.

To compute Bott-Morse version (FOOO) of $HF(L, L)$, we need to find all such (orbifold) holomorphic discs with boundary on L.

Proof consists of three ingredients:

1. Maslov index formula for holomorphic discs
2. Classification of holomorphic discs
3. Fredholm regularity of discs
For teardrop, there are orbifold holomorphic discs.

To compute Bott-Morse version (FOOO) of $HF(L, L)$, we need to find all such (orbifold) holomorphic discs with boundary on L.

For toric manifolds, this was done in a joint work with Y.G. Oh (2003)
For teardrop, there are orbifold holomorphic discs.

To compute Bott-Morse version (FOOO) of $HF(L, L)$, we need to find all such (orbifold) holomorphic discs with boundary on L.

For toric manifolds, this was done in a joint work with Y.G. Oh (2003)

Proof consists of three ingredients:

1. Maslov index formula for holomorphic discs
2. Classification of holomorphic discs
3. Fredholm regularity of discs
For teardrop, there are orbifold holomorphic discs.

To compute Bott-Morse version (FOOO) of $HF(L, L)$, we need to find all such (orbifold) holomorphic discs with boundary on L.

For toric manifolds, this was done in a joint work with Y.G. Oh (2003)

Proof consists of three ingredients
1. Maslov index formula for holomorphic discs
For teardrop, there are orbifold holomorphic discs.

To compute Bott-Morse version (FOOO) of $HF(L, L)$, we need to find all such (orbifold) holomorphic discs with boundary on L.

For toric manifolds, this was done in a joint work with Y.G. Oh (2003)

Proof consists of three ingredients

1. Maslov index formula for holomorphic discs
2. Classification of holomorphic discs
For teardrop, there are orbifold holomorphic discs.

To compute Bott-Morse version (FOOO) of $HF(L, L)$, we need to find all such (orbifold) holomorphic discs with boundary on L.

For toric manifolds, this was done in a joint work with Y.G. Oh (2003)

Proof consists of three ingredients
1. Maslov index formula for holomorphic discs
2. Classification of holomorphic discs
3. Fredholm regularity of discs
There are three equivalent ways to define Maslov index of discs in orbifolds

1. (with H.-S. Shin) Chern-Weil definition: using orthogonal connection ∇ preserving Lagrangian subbundle at the boundary.

$$\mu_{CW}(E, L) = \frac{i}{\pi} \int_{D^2_{\text{orb}}} F_{\nabla}$$
Orbifold Maslov index

There are three equivalent ways to define Maslov index of discs in orbifolds

1. **(with H.-S. Shin)** Chern-Weil definition: using orthogonal connection \(\nabla \) preserving Lagrangian subbundle at the boundary.

\[
\mu_{CW}(E, L) = \frac{i}{\pi} \int_{D^2_{orb}} F_{\nabla}
\]

2. Consider a branch cover \(\Sigma \rightarrow D^2_{orb} \) and define index on \(\Sigma \) divide by the order of the cover.
Orbifold Maslov index

There are three equivalent ways to define Maslov index of discs in orbifolds

1. (with H.-S. Shin) Chern-Weil definition: using orthogonal connection ∇ preserving Lagrangian subbundle at the boundary.

$$ \mu_{CW}(E, L) = \frac{i}{\pi} \int_{D^2_{orb}} F_{\nabla} $$

2. Consider a branch cover $\Sigma \to D^2_{orb}$ and define index on Σ divide by the order of the cover.

3. (with Poddar) Define desingularized Maslov index: given orbibundle over D^2_{orb} desingularize it to get an honest bundle over D^2.

Cho (SNU)
Lagrangian Floer homology for Toric orbifolds
Orbifold Maslov index

There are three equivalent ways to define Maslov index of discs in orbifolds:

1. (with H.-S. Shin) Chern-Weil definition: using orthogonal connection ∇ preserving Lagrangian subbundle at the boundary.

$$\mu_{CW}(E, L) = \frac{i}{\pi} \int_{D^2_{orb}} F_{\nabla}$$

2. Consider a branch cover $\Sigma \rightarrow D^2_{orb}$ and define index on Σ divide by the order of the cover.

3. (with Poddar) Define desingularized Maslov index: given orbibundle over D^2_{orb} desingularize it to get an honest bundle over D^2.

$$\mu_{CW} = \mu^{de} + \sum 2\iota(g_i)$$
Maslov index formula

Theorem

For a toric orbifold X corresponding to (Σ, b, P), let L be a Lagrangian T^n orbit and let $(D, (z_1, \ldots, z_k))$ be an orbi-disc with $\mathbb{Z}/m_i\mathbb{Z}$ singularity at z_i. Consider a holomorphic orbi-disc $w : (D, \partial D) \to (X, L)$ intersecting at each marked point z_i, divisor $X(v_j)$ with multiplicity $m_{i,j}$. Then the desingularized Maslov index of w is given as

$$2 \sum_i \sum_j ([m_{i,j}/m_i]).$$
Using Maslov index formula, orbifold holomorphic discs can be classified.

Theorem

1. The holomorphic orbi-discs with one orbifold point with desingularized Maslov index 0, correspond to the twisted sectors of the toric variety.

2. The smooth Maslov index two holomorphic discs are in one to one correspondence with the vectors b_j's in the stacky fan (Σ, b, P).

3. Above two holomorphic discs are Fredholm regular.
Using Maslov index formula, orbifold holomorphic discs can be classified.

Theorem

1. The holomorphic orbi-discs with one orbifold point with desingularized Maslov index 0, correspond to the twisted sectors of the toric variety.

2. Smooth Maslov index two holomorphic discs are in one to one correspondence with the vectors b_j's in the stacky fan (Σ, b, P).

3. Above two holomorphic discs are Fredholm regular.
Using Maslov index formula, orbifold holomorphic discs can be classified.

Theorem

1. The holomorphic orbi-discs with one orbifold point with desingularized Maslov index 0, correspond to the twisted sectors of the toric variety.

2. The smooth Maslov index two holomorphic discs are in one to one correspondence with the vectors b_j's in the stacky fan (Σ, b, P).
Using Maslov index formula, orbifold holomorphic discs can be classified.

Theorem

1. The holomorphic orbi-discs with one orbifold point with desingularized Maslov index 0, correspond to the twisted sectors of the toric variety.

2. The smooth Maslov index two holomorphic discs are in one to one correspondence with the vectors b_j's in the stacky fan (Σ, b, P).

3. Above two holomorphic discs are Fredholm regular
We can compute Smooth Floer theory. For example,
We can compute Smooth Floer theory. For example,

Theorem

By running smooth Lagrangian Floer theory, all weighted projective space have a torus fiber L, with $HF(L, L) \cong H^(L)$.*
We can compute Smooth Floer theory. For example,

Theorem

By running smooth Lagrangian Floer theory, all weighted projective space have a torus fiber L, with $HF(L, L) \cong H^(L)$.***
We can compute Smooth Floer theory. For example,

Theorem

By running smooth Lagrangian Floer theory, all weighted projective space have a torus fiber L, with $HF(L, L) \cong H^(L)$.***

By turning on Bulk deformation, we obtain much more torus fibers with non-vanishing Floer homology.
We can compute Smooth Floer theory. For example,

Theorem

By running smooth Lagrangian Floer theory, all weighted projective space have a torus fiber L, with $HF(L, L) \cong H^(L)$.*

By turning on Bulk deformation, we obtain much more torus fibers with non-vanishing Floer homology.

Example of teardrop.
We can compute Smooth Floer theory. For example,

Theorem

By running smooth Lagrangian Floer theory, all weighted projective space have a torus fiber L, with $HF(L, L) \cong H^(L)$.***

By turning on Bulk deformation, we obtain much more torus fibers with non-vanishing Floer homology.
- Example of teardrop.
- Example of polytope with labels ≥ 2.