ON THE HIT PROBLEM
FOR THE POLYNOMIAL ALGEBRA

Nguyễn Sum

Quy Nhơn University, Việt Nam

Tokyo - 07 December 2011
Contents

1 Part I. The hit problem for the polynomial algebra

2 Part II. The negative answer to Kameko’s conjecture

3 Part III. The case $k = 4$

4 References
Part I. The hit problem for the polynomial algebra

Part II. The negative answer to Kameko’s conjecture

Part III. The case $k = 4$

References
1. The hit problem for the polynomial algebra

Let V_k be an elementary abelian 2-group of rank k. Denote by BV_k the classifying space of V_k. Then $P_k := H^* (BV_k) \cong F_2 [x_1, x_2, \ldots, x_k]$, a polynomial algebra on k generators x_1, x_2, \ldots, x_k, each of degree 1. Here the cohomology is taken with coefficients in the prime field F_2 of two elements. Being the cohomology of a space, P_k is a module over the mod 2 Steenrod algebra A. The action of A on P_k can explicitly be given by the formula

$$Sq^i (x_j) = \begin{cases} x_j, & i = 0 \\ x_j^2, & i = 1 \\ 0, & \text{otherwise} \end{cases}$$

and subject to the Cartan formula $Sq^i (fg) = \sum_{j=0}^{n} Sq^i (f) Sq^{n-j} (g)$, for $f, g \in P_k$.

Nguyễn Sum (QNU)
1. The hit problem for the polynomial algebra

Let V_k be an elementary abelian 2-group of rank k. Denote by BV_k the classifying space of V_k. Then

$$P_k := H^*(BV_k) \cong \mathbb{F}_2[x_1, x_2, \ldots, x_k],$$

a polynomial algebra on k generators x_1, x_2, \ldots, x_k, each of degree 1. Here the cohomology is taken with coefficients in the prime field \mathbb{F}_2 of two elements.
1. The hit problem for the polynomial algebra

Let V_k be an elementary abelian 2-group of rank k. Denote by BV_k the classifying space of V_k. Then

$$P_k := H^*(BV_k) \cong \mathbb{F}_2[x_1, x_2, \ldots, x_k],$$

a polynomial algebra on k generators x_1, x_2, \ldots, x_k, each of degree 1. Here the cohomology is taken with coefficients in the prime field \mathbb{F}_2 of two elements.

Being the cohomology of a space, P_k is a module over the mod 2 Steenrod algebra \mathcal{A}. The action of \mathcal{A} on P_k can explicitly be given by the formula

$$Sq^i(x_j) = \begin{cases}
 x_j, & i = 0, \\
 x_j^2, & i = 1, \\
 0, & \text{otherwise},
\end{cases}$$

and subject to the Cartan formula

$$Sq^n(fg) = \sum_{i=0}^{n} Sq^i(f) Sq^{n-i}(g),$$

for $f, g \in P_k$.
1. The hit problem for the polynomial algebra

A polynomial \(f \) in \(P_k \) is called \textit{hit} if it can be written as a finite sum
\[
 f = \sum_{i>0} Sq^i(f_i)
\]
for some polynomials \(f_i \).

That means \(f \) belongs to \(\mathcal{A}^+P_k \), where \(\mathcal{A}^+ \) denotes the augmentation ideal in \(\mathcal{A} \).
1. The hit problem for the polynomial algebra

A polynomial f in P_k is called *hit* if it can be written as a finite sum $f = \sum_{i \geq 0} Sq^i(f_i)$ for some polynomials f_i.

That means f belongs to $\mathcal{A}^+ P_k$, where \mathcal{A}^+ denotes the augmentation ideal in \mathcal{A}.

We are interested in the *hit problem*, set up by F. Peterson, of finding a minimal set of generators for the polynomial algebra P_k as a module over the Steenrod algebra.
1. The hit problem for the polynomial algebra

A polynomial f in P_k is called *hit* if it can be written as a finite sum $f = \sum_{i>0} Sq^i(f_i)$ for some polynomials f_i.

That means f belongs to $\mathcal{A}^+ P_k$, where \mathcal{A}^+ denotes the augmentation ideal in \mathcal{A}.

We are interested in the *hit problem*, set up by F. Peterson, of finding a minimal set of generators for the polynomial algebra P_k as a module over the Steenrod algebra.

In other words, we want to find a basis of the \mathbb{F}_2-vector space $QP_k := P_k/\mathcal{A}^+.P_k = \mathbb{F}_2 \otimes \mathcal{A} P_k$.
1. The hit problem for the polynomial algebra

A polynomial f in P_k is called *hit* if it can be written as a finite sum $f = \sum_{i>0} Sq^i(f_i)$ for some polynomials f_i. That means f belongs to $A^+ P_k$, where A^+ denotes the augmentation ideal in A.

We are interested in the *hit problem*, set up by F. Peterson, of finding a minimal set of generators for the polynomial algebra P_k as a module over the Steenrod algebra.

In other words, we want to find a basis of the \mathbb{F}_2-vector space $QP_k := P_k/\mathcal{A}^+.P_k = \mathbb{F}_2 \otimes \mathcal{A} P_k$.

Let $GL_k = GL_k(\mathbb{F}_2)$ be the general linear group over the field \mathbb{F}_2. This group acts naturally on P_k by matrix substitution. Since the two actions of \mathcal{A} and GL_k upon P_k commute with each other, there is an action of GL_k on QP_k.
1. The hit problem for the polynomial algebra

The subspace of degree n homogeneous polynomials $(P_k)_n$ and its quotient $(QP_k)_n$ are GL_k-subspaces of the spaces P_k and QP_k respectively.
1. The hit problem for the polynomial algebra

The subspace of degree n homogeneous polynomials $(P_k)_n$ and its quotient $(QP_k)_n$ are GL_k-subspaces of the spaces P_k and QP_k respectively.

The hit problem was first studied by Peterson [4], Wood [10], Singer [7], and Priddy [5], who showed its relationship to several classical problems respectively in cobordism theory, modular representation theory, Adams spectral sequence for the stable homotopy of spheres, and stable homotopy type of classifying spaces of finite groups.
1. The hit problem for the polynomial algebra

The subspace of degree \(n \) homogeneous polynomials \((P_k)_n\) and its quotient \((QP_k)_n\) are \(GL_k\)-subspaces of the spaces \(P_k\) and \(QP_k\) respectively.

The hit problem was first studied by Peterson [4], Wood [10], Singer [7], and Priddy [5], who showed its relationship to several classical problems respectively in cobordism theory, modular representation theory, Adams spectral sequence for the stable homotopy of spheres, and stable homotopy type of classifying spaces of finite groups.

Several aspects of the hit problem were then investigated by Boardman, Bruner, Hà, Hưng, Carlisle, Crabb, Hubbuck, Giambalvo, Nam, Janfada, Kameko, Minami, Repka, Selick, Silverman, Walker, Wood and others.
1. The hit problem for the polynomial algebra

The subspace of degree \(n \) homogeneous polynomials \((P_k)_n\) and its quotient \((QP_k)_n\) are \(GL_k\)-subspaces of the spaces \(P_k\) and \(QP_k\) respectively.

The hit problem was first studied by Peterson [4], Wood [10], Singer [7], and Priddy [5], who showed its relationship to several classical problems respectively in cobordism theory, modular representation theory, Adams spectral sequence for the stable homotopy of spheres, and stable homotopy type of classifying spaces of finite groups.

Several aspects of the hit problem were then investigated by Boardman, Bruner, Hà, Hưng, Carlisle, Crabb, Hubbuck, Giambalvo, Nam, Janfada, Kameko, Minami, Repka, Selick, Silverman, Walker, Wood and others.

The vector space \(QP_k\) was explicitly calculated by Peterson [4] for \(k = 1, 2\), by Kameko [2] for \(k = 3\). The case \(k = 4\) has been treated by Kameko. However the manuscript unpublished at the time.
2. Kameko’s conjecture

The following is the early results on the hit problem.

Theorem (Peterson (Abs. AMS. 87 [4]), Kameko (PhD Thesis 90 [2]))

For every nonnegative integer \(n \),

1. \(\dim (QP_1^n) \leq 1 \),
2. \(\dim (QP_2^n) \leq 3 \),
3. \(\dim (QP_3^n) \leq 21 \).

Carlisle and Wood showed that the dimension of the vector space \((QP_k^n) \) is uniformly bounded by a number depended only on \(k \).

In 1990, Kameko made the following conjecture in his Johns Hopkins University Ph. D. thesis [2].

Conjecture (Kameko (Ph.D. Thesis 90 [2])). For every nonnegative integer \(n \),

\[
\dim (QP_k^n) \leq \prod_{1 \leq i \leq k} (2i - 1)
\]

The above theorem implies that this conjecture is true for \(k \leq 3 \).
2. Kameko’s conjecture

The following is the early results on the hit problem.

Theorem (Peterson (Abs. AMS. 87 [4]), Kameko (PhD Thesis 90 [2]))

For every nonnegative integer n,

1. $\dim(QP_1)_n \leq 1$,
2. $\dim(QP_2)_n \leq 3$,
3. $\dim(QP_3)_n \leq 21$.

Carlisle and Wood showed that the dimension of the vector space $(QP_k)_n$ is uniformly bounded by a number depended only on k.

In 1990, Kameko made the following conjecture in his Johns Hopkins University Ph. D. thesis [2].

Conjecture (Kameko (Ph.D. Thesis 90 [2])). For every nonnegative integer n,

$$\dim(QP_k)_n \leq \prod_{1 \leq i \leq k} \left(2i - 1 \right).$$

The above theorem implies that this conjecture is true for $k \leq 3$.

Nguyễn Sum (QNU)
On the Hit problem
Tokyo - 07 December 2011 7 / 27
2. Kameko’s conjecture

The following is the early results on the hit problem.

Theorem (Peterson (Abs. AMS. 87 [4]), Kameko (PhD Thesis 90 [2]))

For every nonnegative integer n,

1. $\dim(QP_1)_n \leq 1$,
2. $\dim(QP_2)_n \leq 3$,
3. $\dim(QP_3)_n \leq 21$.

Carlisle and Wood showed that the dimension of the vector space $(QP_k)_n$ is uniformly bounded by a number depended only on k.

In 1990, Kameko made the following conjecture in his Johns Hopkins University Ph. D. thesis [2].
2. Kameko’s conjecture

The following is the early results on the hit problem.

Theorem (Peterson (Abs. AMS. 87 [4]), Kameko (PhD Thesis 90 [2]))

For every nonnegative integer n,
1. $\dim(QP_1)_n \leq 1$,
2. $\dim(QP_2)_n \leq 3$,
3. $\dim(QP_3)_n \leq 21$.

Carlisle and Wood showed that the dimension of the vector space $(QP_k)_n$ is uniformly bounded by a number depended only on k.

In 1990, Kameko made the following conjecture in his Johns Hopkins University Ph. D. thesis [2].

Conjecture (Kameko (Ph.D. Thesis 90 [2])). For every nonnegative integer n,
$$\dim(QP_k)_n \leq \prod_{1 \leq i \leq k} (2^i - 1).$$

The above theorem implies that this conjecture is true for $k \leq 3$.
3. Kameko’s squaring operation

3.1. The μ-function.

The μ-function is one of the numerical functions that have much been used in the context of the hit problem. For a positive integer n, $\mu(n) = \min\{r \in \mathbb{N} : n = \sum_{1 \leq i \leq r} (2^{d_i} - 1)\}$, where $d_i > 0$.

Theorem

For every positive integer n, $\mu(n) = s$ if and only if there exist integers $d_1 > d_2 > \ldots > d_{s-1} \geq d_s > 0$ such that

$$n = 2^{d_1} + 2^{d_2} + \ldots + 2^{d_{s-1}} + 2^{d_s - s}.$$
3. Kameko’s squaring operation

3.1. The μ-function.

The μ-function is one of the numerical functions that have much been used in the context of the hit problem. For a positive integer n,

$$
\mu(n) = \min\{r \in \mathbb{N} : n = \sum_{1 \leq i \leq r} (2^{d_i} - 1), \ d_i > 0\}
$$

$$
= \min\{r \in \mathbb{N} : \alpha(n + r) \leq r\},
$$

where $\alpha(n)$ denotes the number of ones in dyadic expansion of n.
3. Kameko’s squaring operation

3.1. The μ-function.

The μ-function is one of the numerical functions that have much been used in the context of the hit problem. For a positive integer n,

$$\mu(n) = \min\{r \in \mathbb{N} : n = \sum_{1 \leq i \leq r} (2^{d_i} - 1), \ d_i > 0\}$$

$$= \min\{r \in \mathbb{N} : \alpha(n + r) \leq r\},$$

where $\alpha(n)$ denotes the number of ones in dyadic expansion of n.

Theorem

For every positive integer n, $\mu(n) = s$ if and only if there exist integers $d_1 > d_2 > \ldots > d_{s-1} \geq d_s > 0$ such that

$$n = 2^{d_1} + 2^{d_2} + \ldots + 2^{d_{s-1}} + 2^{d_s} - s.$$ \ (1)
3. Kameko’s squaring operation

Peterson [4] made the following conjecture, which was subsequently proved by Wood [10].
3. Kameko’s squaring operation

Peterson [4] made the following conjecture, which was subsequently proved by Wood [10].

Theorem (Wood (MPCPS 89 [10]))

If $\mu(n) > k$, then $(QP_k)_n = 0$.

3. Kameko’s squaring operation

Peterson [4] made the following conjecture, which was subsequently proved by Wood [10].

Theorem (Wood (MPCPS 89 [10]))

If $\mu(n) > k$, then $(QP_k)_n = 0$.

3.2. Squaring operation.

One of the main tools in the study of the hit problem is the dual of Kameko’s squaring $Sq^0_* : (QP_k)^{GL_k} \rightarrow (QP_k)^{GL_k}$. This homomorphism is induced by the GL_k-homomorphism $\widetilde{Sq^0}_* : QP_k \rightarrow QP_k$.
3. Kameko’s squaring operation

Peterson [4] made the following conjecture, which was subsequently proved by Wood [10].

Theorem (Wood (MPCPS 89 [10]))

If $\mu(n) > k$, then $(QP_k)_n = 0$.

3.2. Squaring operation.

One of the main tools in the study of the hit problem is the dual of Kameko’s squaring $Sq_0^*: (QP_k)^{GL_k} \rightarrow (QP_k)^{GL_k}$. This homomorphism is induced by the GL_k-homomorphism $\widetilde{Sq}_*: QP_k \rightarrow QP_k$. The latter is induced by the \mathbb{F}_2-linear map, also denoted by $\widetilde{Sq}_*: P_k \rightarrow P_k$, given by

$$\widetilde{Sq}_*(x) = \begin{cases} y, & \text{if } x = x_1x_2 \ldots x_ky^2, \\ 0, & \text{otherwise}, \end{cases}$$

for any monomial $x \in P_k$.
3. Kameko’s squaring operation

Note that \tilde{Sq}_0^* is not an A-homomorphism. However, $\tilde{Sq}_0^* Sq^{2t} = Sq^t \tilde{Sq}_0^*$, for any nonnegative integer t.

Theorem (Kameko (PhD Thesis 90 [2]))

Let m be a positive integer. If $\mu(2m + k) = k$, then
$$(\tilde{Sq}_0^*)_m : (QP_k)_{2m+k} \to (QP_k)_m$$
is an isomorphism of GL_k-modules.
3. Kameko’s squaring operation

Note that \widetilde{Sq}^0 is not an A-homomorphism. However, $\widetilde{Sq}^0 Sq^{2t} = Sq^t \widetilde{Sq}^0$, for any nonnegative integer t.

Theorem (Kameko (PhD Thesis 90 [2]))

Let m be a positive integer. If $\mu(2m + k) = k$, then $(\widetilde{Sq}_*)_m : (QP_k)_{2m+k} \rightarrow (QP_k)_m$ is an isomorphism of GL_k-modules.

Based on the above results, the hit problem is reduced to the case of degree n with $\mu(n) < k$.
3. Kameko’s squaring operation

Note that \(\tilde{Sq}_0 \) is not an \(\mathcal{A} \)-homomorphism. However, \(\tilde{Sq}_0 \cdot Sq^{2t} = Sq^t \tilde{Sq}_0 \), for any nonnegative integer \(t \).

Theorem (Kameko (PhD Thesis 90 [2]))

Let \(m \) be a positive integer. If \(\mu(2m + k) = k \), then \((\tilde{Sq}_*)_m : (QP_k)_{2m+k} \to (QP_k)_m \) is an isomorphism of \(GL_k \)-modules.

Based on the above results, the hit problem is reduced to the case of degree \(n \) with \(\mu(n) < k \).
That means that \(n \) is of the form (1) with \(s < k \).
The hit problem in the case of degree \(n \) of the form (1) with \(s = k - 1 \), \(d_{i-1} - d_i > 1 \) for \(2 \leq i < k \) and \(d_{k-1} > 1 \) was studied by Crabb-Hubbuck [1], Nam [3] and Repka-Selick [6].
3. Kameko’s squaring operation

Note that \widetilde{Sq}_*^0 is not an A-homomorphism. However, $\widetilde{Sq}_*^0 Sq^{2t} = Sq^t \widetilde{Sq}_*^0$, for any nonnegative integer t.

Theorem (Kameko (PhD Thesis 90 [2]))

Let m be a positive integer. If $\mu(2m + k) = k$, then

$$(\widetilde{Sq}_*)_m : (QP_k)_{2m+k} \to (QP_k)_m$$

is an isomorphism of GL_k-modules.

Based on the above results, the hit problem is reduced to the case of degree n with $\mu(n) < k$.

That means that n is of the form (1) with $s < k$.

The hit problem in the case of degree n of the form (1) with $s = k - 1$, $d_{i-1} - d_i > 1$ for $2 \leq i < k$ and $d_{k-1} > 1$ was studied by Crabb-Hubbuck [1], Nam [3] and Repka-Selick [6].

In the next part, we present some results on the hit problem for the cases of degree n of the form (1) for either $s = k - 1$ or $s = k - 2$.

Nguyễn Sum (QNU)

On the Hit problem

Tokyo - 27 December 2011
3. Some results on the hit problem in generic degree

We study the hit problem in the case of degree n of the form (1) with $s = k - 1$ and $d_k - 2 \geq d_k - 1 \geq k - 1$. In this case, we have

Theorem

Let $n = \sum_{1 \leq i \leq k-1} (2d_i - 1)$ with d_i positive integers such that $d_i - 1 - d_i \geq i - 1$, $3 \leq i \leq k - 1$, and $d_{k-1} \geq k - 1$.

(1) If $d_1 - d_2 \geq 2$, then $\dim(QP_k n) = \prod_{1 \leq i \leq k} (2i - 1)$.

(2) If $d_1 - d_2 = 1$, then $\dim(QP_k n) = 2 \prod_{3 \leq i \leq k-1} (2i - 1)$.

For the case $d_i - 1 - d_i \geq i$, $3 \leq i \leq k - 1$, and $d_{k-1} \geq k - 1$, these results are due to Nam (Adv. Math. 2004 [3]). By this theorem, Kameko’s conjecture is true in generic degree.
3. Some results on the hit problem in generic degree

We study the hit problem in the case of degree n of the form (1) with $s = k - 1$ and $d_{k-2} > d_{k-1} \geq k - 1$. In this case, we have
3. Some results on the hit problem in generic degree

We study the hit problem in the case of degree n of the form (1) with $s = k - 1$ and $d_{k-2} > d_{k-1} \geq k - 1$. In this case, we have

Theorem

Let $n = \sum_{1 \leq i \leq k-1} (2^{d_i} - 1)$ with d_i positive integers such that
$d_{i-1} - d_i \geq i - 1, 3 \leq i \leq k - 1, d_{k-1} \geq k - 1$.

1. If $d_1 - d_2 \geq 2$, then $\dim(QP_k)_n = \prod_{1 \leq i \leq k} (2^i - 1)$.
2. If $d_1 - d_2 = 1$, then $\dim(QP_k)_n = 2 \prod_{3 \leq i \leq k} (2^i - 1)$.
We study the hit problem in the case of degree n of the form (1) with $s = k - 1$ and $d_{k-2} > d_{k-1} \geq k - 1$. In this case, we have

Theorem

Let $n = \sum_{1 \leq i \leq k-1} (2^{d_i} - 1)$ with d_i positive integers such that $d_{i-1} - d_i \geq i - 1$, $3 \leq i \leq k - 1$, $d_{k-1} \geq k - 1$.

1. If $d_1 - d_2 \geq 2$, then $\dim(\mathcal{QP}_k)_n = \prod_{1 \leq i \leq k} (2^i - 1)$.
2. If $d_1 - d_2 = 1$, then $\dim(\mathcal{QP}_k)_n = 2 \prod_{3 \leq i \leq k} (2^i - 1)$.

For the case $d_{i-1} - d_i \geq i$, $3 \leq i \leq k - 1$, and $d_{k-1} \geq k$, these results are due to Nam (Adv. Math. 2004 [3]).

By this theorem, Kameko’s conjecture is true in generic degree.
Part II. The negative answer to Kameko’s conjecture

1. Part I. The hit problem for the polynomial algebra

2. Part II. The negative answer to Kameko’s conjecture

3. Part III. The case $k = 4$

4. References
1. Main Theorem

In this part, we present some results on the hit problem for the case of degree \(n\) of the form (1) with \(s = k - 1\) and \(d_{k-2} \geq d_{k-1} \geq k - 1\).

The following theorem gives an inductive formula for the dimension of \((QP^k)^n\) in this case.

Theorem (Main Theorem)

Let \(n = \sum_{1 \leq i \leq k-1} (2d_i - 1)\) with \(d_i\) positive integers such that \(d_1 > d_2 > \ldots > d_{k-2} \geq d_{k-1}\), and let \(m = \sum_{1 \leq i \leq k-2} (2d_i - d_{k-1} - 1)\). If \(d_{k-1} \geq k - 1 \geq 1\), then

\[
\dim (QP^k)^n = (2k - 1) \dim (QP^{k-1})^m.
\]

For \(d_{k-1} = k - 1\), this theorem is new.

However, for \(d_{k-1} = k - 1\), the theorem follows from the results in Nam (Adv. Math. 2004 [3]) and S (Adv. Math. 2010 [9]).
1. Main Theorem

In this part, we present some results on the hit problem for the case of degree n of the form (1) with $s = k - 1$ and $d_{k-2} \geq d_{k-1} \geq k - 1$.
1. Main Theorem

In this part, we present some results on the hit problem for the case of degree n of the form (1) with $s = k - 1$ and $d_{k-2} \geq d_{k-1} \geq k - 1$. The following theorem gives an inductive formula for the dimension of $(QP_k)_n$ in this case.
1. Main Theorem

In this part, we present some results on the hit problem for the case of degree n of the form (1) with $s = k - 1$ and $d_{k-2} \geq d_{k-1} \geq k - 1$. The following theorem gives an inductive formula for the dimension of $(QP_k)_n$ in this case.

Theorem (Main Theorem)

Let $n = \sum_{1 \leq i \leq k-1} (2^{d_i} - 1)$ with d_i positive integers such that $d_1 > d_2 > \ldots > d_{k-2} \geq d_{k-1}$, and let $m = \sum_{1 \leq i \leq k-2} (2^{d_i} - d_{k-1} - 1)$. If $d_{k-1} \geq k - 1 \geq 1$, then

$$\dim(QP_k)_n = (2^k - 1) \dim(QP_{k-1})_m.$$
1. Main Theorem

In this part, we present some results on the hit problem for the case of degree n of the form (1) with $s = k - 1$ and $d_{k-2} \geq d_{k-1} \geq k - 1$. The following theorem gives an inductive formula for the dimension of $(QP_k)_n$ in this case.

Theorem (Main Theorem)

Let $n = \sum_{1 \leq i \leq k-1} (2^{d_i} - 1)$ with d_i positive integers such that $d_1 > d_2 > \ldots > d_{k-2} \geq d_{k-1}$, and let $m = \sum_{1 \leq i \leq k-2} (2^{d_i} - d_{k-1} - 1)$. If $d_{k-1} \geq k - 1 \geq 1$, then

$$\dim(QP_k)_n = (2^k - 1) \dim(QP_{k-1})_m.$$

For $d_{k-1} \geq k$, the theorem follows from the results in Nam (Adv. Math. 2004 [3]) and S (Adv. Math. 2010 [9]). However, for $d_{k-1} = k - 1$, this theorem is new.
2. The negative answer to Kameko’s conjecture

By induction on k, using Main Theorem for $d_{k-2} = d_k - 1 \geq k - 1$ and the fact that the dual of Kameko’s squaring operation is an epimorphism, one get the following.

Theorem

Let $n = \sum_{1 \leq i \leq k-2} (2d_i - 1)$ with d_i positive integers and let $d_{k-1} = 1$, $n_r = \sum_{1 \leq i \leq r-2} (2d_i - 1)$ with $r = 5, 6, \ldots, k$. If $d_1 - d_2 \geq 4$, $d_i - 2 - d_{i-1} \geq i$, for $4 \leq i \leq k$ and $k \geq 5$, then $\dim(\text{QP}_k^n) = \prod_{1 \leq i \leq k} (2i-1) + \sum_{5 \leq r \leq k} (\prod_{r+1 \leq i \leq k} (2i-1)) \dim(\text{Ker}(\tilde{\text{Sq}}_{0^*}))_{n_r}$, where $(\tilde{\text{Sq}}_{0^*})_{n_r}$ denotes Kameko’s squaring $\tilde{\text{Sq}}_0$ in degree $2n_r + r$. Here, by convention, $\prod_{r+1 \leq i \leq k} (2i-1) = 1$ for $r = k$.
2. The negative answer to Kameko’s conjecture

By induction on k, using Main Theorem for $d_{k-2} = d_{k-1} \geq k - 1$ and the fact that the dual of Kameko’s squaring operation is an epimorphism, one get the following.
2. The negative answer to Kameko’s conjecture

By induction on \(k \), using Main Theorem for \(d_{k-2} = d_{k-1} \geq k - 1 \) and the fact that the dual of Kameko’s squaring operation is an epimorphism, one get the following.

Theorem

Let \(n = \sum_{1 \leq i \leq k-2} (2^{d_i} - 1) \) with \(d_i \) positive integers and let \(d_{k-1} = 1, \ n_r = \sum_{1 \leq i \leq r-2} (2^{d_i} - d_{r-1} - 1) - 1 \) with \(r = 5, 6, \ldots, k \). If \(d_1 - d_2 \geq 4, \ d_i - 2 - d_{i-1} \geq i, \) for \(4 \leq i \leq k \) and \(k \geq 5 \), then

\[
\dim(QP_k)_n = \prod_{1 \leq i \leq k} (2^i - 1) + \sum \left(\prod_{5 \leq r \leq k} (2^i - 1) \right) \dim \ker(\widetilde{Sq}_0^*)_{n_r},
\]

where \((\widetilde{Sq}_0^*)_{n_r} : (QP_r)_{2n_r + r} \to (QP_r)_{n_r} \) denotes Kameko’s squaring \(\widetilde{Sq}_* \) in degree \(2n_r + r \). Here, by convention, \(\prod_{r+1 \leq i \leq k} (2^i - 1) = 1 \) for \(r = k \).
2. The negative answer to Kameko’s conjecture

In order to conclude that Kameko’s conjecture is false in degree $2n_k + k$ for any $k \geq 5$, it suffices to show that $\text{Ker}(\widetilde{Sq}_0)^r$ is nonzero.
2. The negative answer to Kameko’s conjecture

In order to conclude that Kameko’s conjecture is false in degree $2n_k + k$ for any $k \geq 5$, it suffices to show that $\text{Ker}(\tilde{Sq}^0_{\ast})_{nr}$ is nonzero.

Obviously $2n_r + r = 2^{e_1} + 2^{e_2} + \ldots + 2^{e_{r-2}} - r + 2$, where $e_i = d_i - d_{r-1} + 1$ for $1 \leq i \leq r - 2$.
2. The negative answer to Kameko’s conjecture

In order to conclude that Kameko’s conjecture is false in degree $2n_k + k$ for any $k \geq 5$, it suffices to show that $\text{Ker}(\widetilde{Sq}_0^*)_{n_r}$ is nonzero.

Obviously $2n_r + r = 2^{e_1} + 2^{e_2} + \ldots + 2^{e_{r-2}} - r + 2$, where $e_i = d_i - d_{r-1} + 1$ for $1 \leq i \leq r - 2$.

Consider the element $x = x_1^{2^{e_1} - 1}x_2^{2^{e_2} - 1}\ldots x_{r-2}^{2^{e_{r-2}} - 1}$, in degree $2n_r + r$. The element is called a spike, i.e. a monomial whose exponents are all of the form $2^e - 1$ for some e.
2. The negative answer to Kameko’s conjecture

In order to conclude that Kameko’s conjecture is false in degree $2n_k + k$ for any $k \geq 5$, it suffices to show that $\text{Ker}(\widetilde{Sq}_*)_{n_r}$ is nonzero.

Obviously $2n_r + r = 2^{e_1} + 2^{e_2} + \ldots + 2^{e_{r-2}} - r + 2$, where $e_i = d_i - d_{r-1} + 1$ for $1 \leq i \leq r - 2$.

Consider the element $x = x_1^{2^{e_1} - 1} x_2^{2^{e_2} - 1} \ldots x_{r-2}^{2^{e_{r-2}} - 1}$, in degree $2n_r + r$. The element is called a spike, i. e. a monomial whose exponents are all of the form $2^e - 1$ for some e.

It is well-known that the class $[x]$ in $(QP_r)_{2n_r + r}$ of a spike x is nonzero.

Indeed, one has

$$Sq^a x_j^{2^e - 1 - a} = \left(\begin{array}{c} 2^e - 1 - a \\ a \end{array}\right) x_j^{2^e - 1} = 0,$$

as $\left(\begin{array}{c} 2^e - 1 - a \\ a \end{array}\right) = 0$ in \mathbb{F}_2 for arbitrary j and any $a > 0$. Hence, a spike cannot be hit by any Steenrod operation of positive degree.
On the other hand, since the exponents of \(x_{r-1} \) and \(x_r \) in \(x \) are zero,
\((\tilde{Sq}_*)_{n_r}([x]) = 0\). Thus, we have \(\text{Ker}(\tilde{Sq}_*)_{n_r} \neq 0 \) for \(r = 5, 6, \ldots, k \).
2. The negative answer to Kameko’s conjecture

On the other hand, since the exponents of x_{r-1} and x_r in x are zero, $(\widetilde{Sq}_r^0)_{n_r}([x]) = 0$. Thus, we have $\text{Ker}(\widetilde{Sq}_r^0)_{n_r} \neq 0$ for $r = 5, 6, \ldots, k$. Therefore, by the above theorem, Kameko’s conjecture is not true in degree $n = 2n_k + k$ for any $k \geq 5$, where $n_k = 2^{d_1-1} + 2^{d_2-1} + \ldots + 2^{d_k-2-1} - k + 1$. So, we get
2. The negative answer to Kameko’s conjecture

On the other hand, since the exponents of x_{r-1} and x_r in x are zero, $(\widetilde{Sq}_0^r)[x]\rangle = 0$. Thus, we have $\ker(\widetilde{Sq}_0^r)[x] \neq 0$ for $r = 5, 6, \ldots, k$. Therefore, by the above theorem, Kameko’s conjecture is not true in degree $n = 2n_k + k$ for any $k \geq 5$, where $n_k = 2^{d_1 - 1} + 2^{d_2 - 1} + \ldots + 2^{d_k - 2} - k + 1$. So, we get

Corollary. Kameko’s conjecture is not true for any $k > 4$.
2. The negative answer to Kameko’s conjecture

On the other hand, since the exponents of x_{r-1} and x_r in x are zero, $(\widetilde{Sq}_*)_{n_r}([x]) = 0$. Thus, we have $\text{Ker}(\widetilde{Sq}_*)_{n_r} \neq 0$ for $r = 5, 6, \ldots, k$. Therefore, by the above theorem, Kameko’s conjecture is not true in degree $n = 2n_k + k$ for any $k \geq 5$, where

$$n_k = 2^{d_1-1} + 2^{d_2-1} + \ldots + 2^{d_k-2-1} - k + 1.$$

So, we get

Corollary. Kameko’s conjecture is not true for any $k > 4$.

However, we have $\dim (QP_k)_{2n_k + k} = \dim (QP_k)_{n_k} + \dim \text{Ker}(\widetilde{Sq}_*)_{n_k}$.

2. The negative answer to Kameko’s conjecture

On the other hand, since the exponents of x_{r-1} and x_r in x are zero, $(\widetilde{Sq}_*)_{n_r}([x]) = 0$. Thus, we have $\text{Ker}(\widetilde{Sq}_*)_{n_r} \neq 0$ for $r = 5, 6, \ldots, k$. Therefore, by the above theorem, Kameko’s conjecture is not true in degree $n = 2n_k + k$ for any $k \geq 5$, where $n_k = 2^{d_1-1} + 2^{d_2-1} + \ldots + 2^{d_k-2-1} - k + 1$. So, we get

Corollary. Kameko’s conjecture is not true for any $k > 4$.

However, we have $\dim(QP_k)_{2n_k+k} = \dim(QP_k)_{n_k} + \dim \text{Ker}(\widetilde{Sq}_*)_{n_k}$.

Then, from Main Theorem we obtain

$$\dim(QP_k)_{n_k} = \prod_{1 \leq i \leq k} (2^i - 1) + \sum_{5 \leq r < k} \left(\prod_{r+1 \leq i \leq k} (2^i - 1) \right) \dim \text{Ker}(\widetilde{Sq}_*)_{n_r}.$$
2. The negative answer to Kameko’s conjecture

On the other hand, since the exponents of x_{r-1} and x_r in x are zero, $(\widetilde{Sq}_*)_{n_r}([x]) = 0$. Thus, we have $\text{Ker}(\widetilde{Sq}_*)_{n_r} \neq 0$ for $r = 5, 6, \ldots, k$. Therefore, by the above theorem, Kameko’s conjecture is not true in degree $n = 2n_k + k$ for any $k \geq 5$, where $n_k = 2^{d_1-1} + 2^{d_2-1} + \ldots + 2^{d_k-2}-1 - k + 1$. So, we get

Corollary. Kameko’s conjecture is not true for any $k > 4$.

However, we have $\dim(QP_k)_{2n_k+k} = \dim(QP_k)_{n_k} + \dim \text{Ker}(\widetilde{Sq}_*)_{n_k}$.

Then, from Main Theorem we obtain

$$\dim(QP_k)_{n_k} = \prod_{1 \leq i \leq k} (2^i - 1) + \sum_{5 \leq r < k} \left(\prod_{r+1 \leq i \leq k} (2^i - 1) \right) \dim \text{Ker}(\widetilde{Sq}_*)_{n_r}.$$

Hence, for $k > 5$, Kameko’s conjecture is not true in degree n_k.
3. Proof of Main Theorem

We denote $N_k = \{ (i_1; I) ; I = (i_1, i_2, ..., i_r), 1 \leq i_2 < ... < i_r \leq k, 0 \leq r < k \}$.

For $1 \leq r < k$, we set $N_{r-1} \cup r = \{ (i_1; I \cup r) ; (i_1; I) \in N_{r-1} \}$. Then we have $N_k = (N_1 \cup 2) \cup ... \cup (N_{k-1} \cup k) \cup \{(1; \emptyset), ..., (k; \emptyset)\}$.

For $1 \leq i \leq k$, define the homomorphism $f_i = f_k; i : P_{k-1} \to P_k$ of algebras by substituting $f_i(x_j) = \{ x_j, \text{if } 1 \leq j < i, x_j + 1, \text{if } i \leq j < k \}$.
We denote

\[\mathcal{N}_k = \{ (i; l); l = (i_1, i_2, \ldots, i_r), 1 \leq i < i_1 < \ldots < i_r \leq k, \ 0 \leq r < k \}. \]
3. Proof of Main Theorem

We denote

$$\mathcal{N}_k = \{(i; I); I = (i_1, i_2, \ldots, i_r), 1 \leq i < i_1 < \ldots < i_r \leq k, \ 0 \leq r < k\}.$$

For $1 \leq r < k$, we set $\mathcal{N}_{r-1} \cup r = \{(i; I \cup r); (i; I) \in \mathcal{N}_{r-1}\}$. Then we have

$$\mathcal{N}_k = (\mathcal{N}_1 \cup 2) \cup \ldots \cup (\mathcal{N}_{k-1} \cup k) \cup \{(1; \emptyset), \ldots, (k; \emptyset)\}.$$
3. Proof of Main Theorem

We denote

\[\mathcal{N}_k = \{(i; l); l = (i_1, i_2, \ldots, i_r), 1 \leq i < i_1 < \ldots < i_r \leq k, \ 0 \leq r < k\} . \]

For \(1 \leq r < k \), we set \(\mathcal{N}_{r-1} \cup r = \{(i; l \cup r); (i; l) \in \mathcal{N}_{r-1}\} \). Then we have

\[\mathcal{N}_k = (\mathcal{N}_1 \cup 2) \cup \ldots \cup (\mathcal{N}_{k-1} \cup k) \cup \{(1; \emptyset), \ldots, (k; \emptyset)\} . \]

For \(1 \leq i \leq k \), define the homomorphism \(f_i = f_{k;i} : P_{k-1} \rightarrow P_k \) of algebras by substituting

\[f_i(x_j) = \begin{cases} x_j, & \text{if } 1 \leq j < i, \\ x_{j+1}, & \text{if } i \leq j < k. \end{cases} \]
3. Proof of Main Theorem

Let \((i; l) \in \mathcal{N}_k, u \in \mathbb{N}\). Set \(x_{(l,u)} = x_{i_u}^{2^{r-1}+\ldots+2^{r-u}} \prod_{u < t \leq r} x_{i_t}^{2^{r-t}}\) for \(1 \leq u \leq r\), and \(x_{(l,u)} = 1\) for \(r = 0\).
Let \((i; I) \in \mathcal{N}_k, u \in \mathbb{N}\). Set \(x(I, u) = x_{i_{u}}^{2r-1} \cdots 2^{r-u} \prod_{u < t \leq r} x_{i_{t}}^{2r-t}\) for \(1 \leq u \leq r\), and \(x(I, u) = 1\) for \(r = 0\).

For a monomial \(x = x_1^{a_1} x_2^{a_2} \cdots x_{k-1}^{a_{k-1}}\) in \(P_{k-1}\), we define the monomial \(\phi(i; I)(x)\) in \(P_k\) by setting

\[
\phi(i; I)(x) = \begin{cases}
(x_i^{2r-1} f_i(x))/x(I, u), & \text{if } a_{i_1-1} = \cdots = a_{i_{u-1}-1} = 2^r - 1, \ a_{i_u-1} > 2^r - 1, \alpha_{r-t}(a_{i_{u-1}}) = 1, \\
0, & \text{otherwise,}
\end{cases}
\]
3. Proof of Main Theorem

Let \((i; l) \in \mathcal{N}_k, u \in \mathbb{N}\). Set \(x_{(l,u)} = x_{i_u}^{2r-1} \cdots + x_{r}^{2r-u} \prod_{u < t \leq r} x_{i_t}^{2r-t}\) for \(1 \leq u \leq r\), and \(x_{(l,u)} = 1\) for \(r = 0\). For a monomial \(x = x_1^{a_1} x_2^{a_2} \cdots x_{k-1}^{a_{k-1}}\) in \(P_{k-1}\), we define the monomial \(\phi_{(i;l)}(x)\) in \(P_k\) by setting

\[
\phi_{(i;l)}(x) = \begin{cases}
(x_i^{2r-1} f_i(x))/x_{(l,u)}, & \text{if } a_{i-1} = \cdots = a_{i_u-1} = 2r - 1, \\
& a_{i_u-1} > 2r - 1, \alpha_{r-t}(a_{i_u-1}) = 1, \\
0, & 1 \leq t \leq u, \alpha_{r-t}(a_{i_t-1}) = 1, \ u < t \leq r, \\
& \text{otherwise},
\end{cases}
\]

Then we have an \(\mathbb{F}_2\)-linear map \(\phi_{(i;l)} : P_{k-1} \to P_k\).
3. Proof of Main Theorem

In particular, \(\phi(i;\emptyset) = f_i \).

Let \(X = x_1x_2\ldots,x_{k-1} \in P_{k-1} \). If \(a_{j-1} = 0, j = i_1, i_2, \ldots, i_{u-1} \) and \(a_{i_u-1} > 0 \), then

\[
\phi(i;I)(X^{2^r-1}x^{2^r}) = \phi(i_u;J_u)(X^{2^r-1})f_i(x)^{2^r},
\]

where \(J_u = (i_{u+1}, \ldots, i_r) \).
3. Proof of Main Theorem

In particular, \(\phi(i;\emptyset) = f_i \).

Let \(X = x_1 x_2 \ldots, x_{k-1} \in P_{k-1} \). If \(a_{j-1} = 0, j = i_1, i_2, \ldots, i_{u-1} \) and \(a_{i_u-1} > 0 \), then

\[
\phi(i;l)(X^{2^r-1}x^{2^r}) = \phi(i_u;J_u)(X^{2^r-1})f_i(x)^{2^r},
\]

where \(J_u = (i_{u+1}, \ldots, i_r) \).

Let \(B \) be a finite subset of \(P_{k-1} \) consisting of some homogeneous polynomials in degree \(n \). We set

\[
\Phi^0(B) = \bigcup_{1 \leq i \leq k} \phi(i;\emptyset)(B) = \bigcup_{1 \leq i \leq k} f_i(B).
\]
\[
\Phi^+(B) = \bigcup_{(i;l) \in \mathcal{N}_k, 0<\ell(l) \leq k-1} \phi(i;l)(B).
\]
\[
\Phi(B) = \Phi^0(B) \cup \Phi^+(B).
\]
Main Theorem follows from the following:

Proposition
Let \(n, m \) be as in Main Theorem and \(d^{k-1} \geq k-1 \). If \(B^{k-1}(n) \) is a minimal set of generators for the \(A \)-module \(P^{k-1} \) in degree \(n \), then \(B^k(n) = \Phi(B^{k-1}(n)) \) is also a minimal set of generators for the \(A \)-module \(P^k \) in degree \(n \).

For \(d^{k-1} \geq k \), this proposition is a modification of a result in Nam (Adv. Math. 2004 [3]). For \(d^{k-1} > k \) and \(d^{k-2} = d^{k-1} \), it was proved in S (Adv. Math. 2010 [9].)
3. Proof of Main Theorem

Main Theorem follows from the following:

Proposition

Let n, m be as in Main Theorem and $d_{k-1} \geq k - 1$. If $B_{k-1}(n)$ is a minimal set of generators for A-module P_{k-1} in degree n, then $B_k(n) = \Phi(B_{k-1}(n))$ is also a minimal set of generators for A-module P_k in degree n.
Main Theorem follows from the following:

Proposition

Let n, m be as in Main Theorem and $d_{k-1} \geq k - 1$. If $B_{k-1}(n)$ is a minimal set of generators for A-module P_{k-1} in degree n, then $B_k(n) = \Phi(B_{k-1}(n))$ is also a minimal set of generators for A-module P_k in degree n.

For $d_{k-1} \geq k$, this proposition is a modification of a result in Nam (Adv. Math. 2004 [3]). For $d_{k-1} > k$ and $d_{k-2} = d_{k-1}$, it was proved in S (Adv. Math. 2010 [9].)
Part III. The case $k = 4$
1. The case $k = 4$

For $k = 4$ the hit problem is reduced to the cases of degree n with $\mu(n) < 4$. Since $\alpha(n) + \mu(n) < 4$, it suffices to consider six cases:

1. $n = 2s + 2 - 3, \mu(n) = 3, \alpha(n + 3) = 1$,

2. $n = 2s + 1 - 2, \mu(n) = 2, \alpha(n + 2) = 1$,

3. $n = 2s - 1, \mu(n) = 1, \alpha(n + 1) = 1$,

4. $n = 2s + t + 1 + 2s + t + 2 - 3, \mu(n) = 3, \alpha(n + 3) = 2$,

5. $n = 2s + t + 2s - 2, \mu(n) = 2, \alpha(n + 2) = 2$,

6. $n = 2s + t + u + 2s + t + 2 - 3, \mu(n) = 3, \alpha(n + 3) = 3$,
1. The case $k = 4$

For $k = 4$ the hit problem is reduced to the cases of degree n with $\mu(n) < 4$. Since $\alpha(n + \mu(n)) \leq \mu(n) < 4$, it suffices to consider six cases:
1. The case $k = 4$

For $k = 4$ the hit problem is reduced to the cases of degree n with $\mu(n) < 4$. Since $\alpha(n + \mu(n)) \leq \mu(n) < 4$, it suffices to consider six cases:

1) $n = 2^{s+2} - 3$, $\mu(n) = 3, \alpha(n + 3) = 1$,
2) $n = 2^{s+1} - 2$, $\mu(n) = 2, \alpha(n + 2) = 1$,
3) $n = 2^s - 1$, $\mu(n) = 1, \alpha(n + 1) = 1$,
4) $n = 2^{s+t+1} + 2^{s+1} - 3$, $\mu(n) = 3, \alpha(n + 3) = 2$,
5) $n = 2^{s+t} + 2^s - 2$, $\mu(n) = 2, \alpha(n + 2) = 2$,
6) $n = 2^{s+t+u} + 2^{s+t} + 2^s - 3$, $\mu(n) = 3, \alpha(n + 3) = 3$,

where s, t, u are the positive integers.
2. The cases $\alpha(n + \mu(n)) = 1$

2.1. If $\mu(n) = 3$, then $n = 2s + 2 - 3 = 2s + 1 + 2s - 3$.

From Main Theorem we have $\dim(QP^4_{n}) = 15 \dim(QP^3_{1}) = 45$ for $s \geq 3$.

By a direct computation using Kameko's results for $k = 3$, we have $\dim(QP^4_{5}) = 15$ for $s = 1$, and $\dim(QP^4_{13}) = 35$ for $s = 2$.

2.2. If $\mu(n) = 2$, then $n = 2s + 1 - 2 = 2(2s - 3) + 4$. Hence, we have $QP^4_{n} \sim (QP^4_{2s - 3}) \oplus \ker(\tilde{Sq}^0_{2s - 3})$.

By a direct computation, we get $n = 2s + 1 - 2$ for $s = 1$, $s = 2$, $s = 3$, $s = 4$, and $s \geq 5$.

2.3. If $\mu(n) = 1$, then $n = 2s - 1$. By a direct computation, we get $n = 2s - 1$ for $s = 1$, $s = 2$, $s = 3$, $s = 4$, and $s \geq 5$.

$\dim(QP^4_{n}) | 4, 14, 35, 75, 89, 85.$
2. The cases $\alpha(n + \mu(n)) = 1$

2.1. If $\mu(n) = 3$, then $n = 2^{s+2} - 3 = 2^{s+1} + 2^s + 2^s - 3$.

From Main Theorem we have $\dim(QP_4)_n = 15 \dim(QP_3)_1 = 45$ for $s \geq 3$.

By a direct computation using Kameko’s results for $k = 3$, we have $\dim(QP_4)_5 = 15$ for $s = 1$, and $\dim(QP_4)_{13} = 35$ for $s = 2$.

\[
\begin{array}{c|ccc}
 n = 2^{s+2} - 3 & s = 1 & s = 2 & s \geq 3 \\
\hline
 \dim(QP_4)_n & 15 & 35 & 45 \\
\end{array}
\]
2. The cases $\alpha(n + \mu(n)) = 1$

2.1. If $\mu(n) = 3$, then $n = 2^{s+2} - 3 = 2^{s+1} + 2^s + 2^s - 3$.

From Main Theorem we have $\dim(QP_4)_n = 15 \dim(QP_3)_1 = 45$ for $s \geq 3$.

By a direct computation using Kameko’s results for $k = 3$, we have $\dim(QP_4)_5 = 15$ for $s = 1$, and $\dim(QP_4)_{13} = 35$ for $s = 2$.

$$
\begin{array}{ccc}
 n = 2^{s+2} - 3 & | & s = 1 \quad s = 2 \quad s \geq 3 \\
 \dim(QP_4)_n & | & 15 \quad 35 \quad 45 \\
\end{array}
$$

2.2. If $\mu(n) = 2$, then $n = 2^{s+1} - 2 = 2(2^s - 3) + 4$. Hence, we have $(QP_4)_n \cong (QP_4)_{2^s-3} \oplus \ker(Sq^0_{2^s-3})$.

By a direct computation, we get

$$
\begin{array}{cccccc}
 n = 2^{s+1} - 2 & | & s = 1 \quad s = 2 \quad s = 3 \quad s = 4 \quad s \geq 5 \\
 \dim(QP_4)_n & | & 6 \quad 24 \quad 50 \quad 70 \quad 80 \\
\end{array}
$$
2. The cases $\alpha(n + \mu(n)) = 1$

2.1. If $\mu(n) = 3$, then $n = 2^{s+2} - 3 = 2^{s+1} + 2^s + 2^s - 3$.

From Main Theorem we have $\text{dim}(QP_4)_n = 15 \text{dim}(QP_3)_1 = 45$ for $s \geq 3$.

By a direct computation using Kameko’s results for $k = 3$, we have

$\text{dim}(QP_4)_5 = 15$ for $s = 1$, and $\text{dim}(QP_4)_{13} = 35$ for $s = 2$.

$$
\begin{array}{c|ccc}
 n = 2^{s+2} - 3 & s = 1 & s = 2 & s \geq 3 \\
 \text{dim}(QP_4)_n & 15 & 35 & 45
\end{array}
$$

2.2. If $\mu(n) = 2$, then $n = 2^{s+1} - 2 = 2(2^s - 3) + 4$. Hence, we have

$(QP_4)_n \cong (QP_4)_{2^s - 3} \oplus \text{Ker}(\tilde{Sq}^0)_{2^s - 3}$.

By a direct computation, we get

$$
\begin{array}{c|cccccc}
 n = 2^{s+1} - 2 & s = 1 & s = 2 & s = 3 & s = 4 & s \geq 5 \\
 \text{dim}(QP_4)_n & 6 & 24 & 50 & 70 & 80
\end{array}
$$

2.3. If $\mu(n) = 1$, then $n = 2^s - 1$. By a direct computation, we get

$$
\begin{array}{c|cccccc}
 n = 2^s - 1 & s = 1 & s = 2 & s = 3 & s = 4 & s = 5 & s \geq 6 \\
 \text{dim}(QP_4)_n & 4 & 14 & 35 & 75 & 89 & 85
\end{array}
$$
3. The cases $\alpha(n + \mu(n)) = 2$

If $\mu(n) = 3$, then

$$n = 2s + t + 1 + 2s + 1 - 3 = 2s + t + 1 + 2s + 2s - 3.$$

By Main Theorem, $\dim(QP_4^n) = 15 \dim(QP_3^{2t+1-1})$. So, by a direct computation using Kameko's results for $k = 3$, we see that $\dim(QP_4^n)$ is given by the following table:

<table>
<thead>
<tr>
<th>s</th>
<th>$t = 1$</th>
<th>$t = 2$</th>
<th>$t = 3$</th>
<th>$t \geq 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s = 1$</td>
<td>46, 87, 136, 150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$s = 2$</td>
<td>94, 135, 180, 195</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$s \geq 3$</td>
<td>105, 150, 195, 210</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. The cases $\alpha(n + \mu(n)) = 2$

3.1. If $\mu(n) = 3$, then $n = 2^{s+t+1} + 2^{s+1} - 3 = 2^{s+t+1} + 2^s + 2^s - 3$. By Main Theorem, $\dim(QP_4)_n = 15 \dim(QP_3)_{2^{t+1}-1}$. So, by a direct computation using Kameko’s results for $k = 3$, we see that $\dim(QP_4)_n$ is given by the following table:

<table>
<thead>
<tr>
<th>t</th>
<th>$s=1$</th>
<th>$s=2$</th>
<th>$s \geq 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46</td>
<td>94</td>
<td>105</td>
</tr>
<tr>
<td>2</td>
<td>87</td>
<td>135</td>
<td>150</td>
</tr>
<tr>
<td>≥ 4</td>
<td>136</td>
<td>180</td>
<td>195</td>
</tr>
</tbody>
</table>
3. The cases $\alpha(n + \mu(n)) = 2$

3.1. If $\mu(n) = 3$, then $n = 2^{s+t+1} + 2^{s+1} - 3 = 2^{s+t+1} + 2^s + 2^s - 3$. By Main Theorem, $\dim(QP_4)_n = 15 \dim(QP_3)_{2^{t+1}-1}$. So, by a direct computation using Kameko’s results for $k = 3$, we see that $\dim(QP_4)_n$ is given by the following table:

<table>
<thead>
<tr>
<th>$n = 2^{s+t+1} + 2^{s+1} - 3$</th>
<th>$t = 1$</th>
<th>$t = 2$</th>
<th>$t = 3$</th>
<th>$t \geq 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s = 1$</td>
<td>46</td>
<td>87</td>
<td>136</td>
<td>150</td>
</tr>
<tr>
<td>$s = 2$</td>
<td>94</td>
<td>135</td>
<td>180</td>
<td>195</td>
</tr>
<tr>
<td>$s \geq 3$</td>
<td>105</td>
<td>150</td>
<td>195</td>
<td>210</td>
</tr>
</tbody>
</table>
3. The cases \(\alpha(n + \mu(n)) = 2 \)

3.2. If \(\mu(n) = 2 \), then \(n = 2^{s+t} + 2^s - 2 = 2m + 4 \), where \(m = 2^{s+t-1} + 2^{s-1} - 3 \). So, \(\dim(QP_4)_n \cong (QP_4)_m \oplus \text{Ker}(\tilde{Sq}^0)_m \). By a direct computation, we have
3. The cases $\alpha(n + \mu(n)) = 2$

3.2. If $\mu(n) = 2$, then $n = 2^{s+t} + 2^s - 2 = 2m + 4$, where

$m = 2^{s+t-1} + 2^{s-1} - 3$. So, $\dim(QP_4)_n \cong (QP_4)_m \oplus \text{Ker}(\widetilde{Sq}^0)_m$. By a direct computation, we have

\[
\begin{array}{c|cccccc}
 n = 2^{s+t} + 2^s - 2 & t = 1 & t = 2 & t = 3 & t = 4 & t = 5 & t \geq 6 \\
 s = 1 & 21 & 55 & 73 & 95 & 115 & 125 \\
 s = 2 & 70 & 126 & 165 & 179 & 175 & 175 \\
 s = 3 & 116 & 192 & 241 & 255 & 255 & 255 \\
 s = 4 & 164 & 240 & 285 & 300 & 300 & 300 \\
 s \geq 5 & 175 & 255 & 300 & 315 & 315 & 315 \\
\end{array}
\]
4. The case $\alpha(n + \mu(n)) = 3$

In this case we have $n = 2s + t + u + 2s + t - 3$. By Main Theorem, for $s \geq 3$, dim$(QP^4_n) = 15 \dim(QP^3_m)$ with $m = 2t + u + 2t - 2$.

Hence, by a direct computation using Kameko's results for $k = 3$, one get $n|t = 1$ $t = 2$ $t \geq 3$ $t = 1$ $t = 1$ $t \geq 3$ $t \geq 2$ $u \geq 3$ $u \geq 2$ $s = 1$ $64 155 140 140 120 225 210$

From the above results, we have Corollary. Kameko's conjecture is true for $k = 4$.

Nguyễn Sum (QNU)
4. The case $\alpha(n + \mu(n)) = 3$

In this case we have $n = 2^{s+t+u} + 2^{s+t} + 2^s - 3$. By Main Theorem, for $s \geq 3$, $\dim(QP_4)_n = 15 \dim(QP_3)_m$ with $m = 2^{t+u} + 2^t - 2$.
4. The case $\alpha(n + \mu(n)) = 3$

In this case we have $n = 2^{s+t+u} + 2^{s+t} + 2^s - 3$. By Main Theorem, for $s \geq 3$, $\dim(QP_4)_n = 15 \dim(QP_3)_m$ with $m = 2^{t+u} + 2^t - 2$. Hence, by a direct computation using Kameko’s results for $k = 3$, one get

\[\begin{array}{cccccc}
\hline
& s & t & u & s & t \\
\hline
1 & 1 & 2 & 1 & 1 & 2 \\
1 & 1 & 2 & 2 & 2 & 2 \\
\hline
\end{array} \]
4. The case $\alpha(n + \mu(n)) = 3$

In this case we have $n = 2^{s+t} + u + 2^{s+t} + 2^s - 3$. By Main Theorem, for $s \geq 3$, $\dim(QP_4)_n = 15 \dim(QP_3)_m$ with $m = 2^{t+u} + 2^t - 2$.

Hence, by a direct computation using Kameko’s results for $k = 3$, one get

<table>
<thead>
<tr>
<th>s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>64</td>
<td>155</td>
<td>140</td>
<td>140</td>
<td>120</td>
<td>225</td>
<td>210</td>
<td></td>
</tr>
</tbody>
</table>

Corollary. Kameko’s conjecture is true for $k = 4$.
4. The case $\alpha(n + \mu(n)) = 3$

In this case we have $n = 2^{s+t+u} + 2^{s+t} + 2^s - 3$. By Main Theorem, for $s \geq 3$, $\dim(QP_4)_n = 15 \dim(QP_3)_m$ with $m = 2^{t+u} + 2^t - 2$.

Hence, by a direct computation using Kameko’s results for $k = 3$, one gets:

<table>
<thead>
<tr>
<th>n</th>
<th>$t = 1$</th>
<th>$t = 2$</th>
<th>$t \geq 3$</th>
<th>$t = 1$</th>
<th>$t = 1$</th>
<th>$t = 2$</th>
<th>$t > 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$u = 1$</td>
<td>$u = 1$</td>
<td>$u = 1$</td>
<td>$u = 2$</td>
<td>$u \geq 3$</td>
<td>$u \geq 2$</td>
<td>$u \geq 2$</td>
</tr>
<tr>
<td>$s = 1$</td>
<td>64</td>
<td>155</td>
<td>140</td>
<td>140</td>
<td>120</td>
<td>225</td>
<td>210</td>
</tr>
<tr>
<td>$s \geq 2$</td>
<td>120</td>
<td>210</td>
<td>210</td>
<td>225</td>
<td>210</td>
<td>315</td>
<td>315</td>
</tr>
</tbody>
</table>
4. The case $\alpha(n + \mu(n)) = 3$

In this case we have $n = 2^{s+t+u} + 2^{s+t} + 2^s - 3$. By Main Theorem, for $s \geq 3$, $\dim(QP_4)_n = 15 \dim(QP_3)_m$ with $m = 2^{t+u} + 2^t - 2$.

Hence, by a direct computation using Kameko’s results for $k = 3$, one get

<table>
<thead>
<tr>
<th>n</th>
<th>$t = 1$</th>
<th>$t = 2$</th>
<th>$t \geq 3$</th>
<th>$t = 1$</th>
<th>$t = 1$</th>
<th>$t = 2$</th>
<th>$t > 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$u = 1$</td>
<td>$u = 1$</td>
<td>$u = 1$</td>
<td>$u = 2$</td>
<td>$u \geq 3$</td>
<td>$u \geq 2$</td>
<td>$u \geq 2$</td>
</tr>
<tr>
<td>$s = 1$</td>
<td>64</td>
<td>155</td>
<td>140</td>
<td>140</td>
<td>120</td>
<td>225</td>
<td>210</td>
</tr>
<tr>
<td>$s \geq 2$</td>
<td>120</td>
<td>210</td>
<td>210</td>
<td>225</td>
<td>210</td>
<td>315</td>
<td>315</td>
</tr>
</tbody>
</table>

From the above results, we have
4. The case $\alpha(n + \mu(n)) = 3$

In this case we have $n = 2^{s+t+u} + 2^{s+t} + 2^s - 3$. By Main Theorem, for $s \geq 3$, $\dim(QP_4)_n = 15 \dim(QP_3)_m$ with $m = 2^{t+u} + 2^t - 2$.

Hence, by a direct computation using Kameko’s results for $k = 3$, one get

<table>
<thead>
<tr>
<th>n</th>
<th>$t = 1$</th>
<th>$t = 2$</th>
<th>$t \geq 3$</th>
<th>$t = 1$</th>
<th>$t = 1$</th>
<th>$t = 2$</th>
<th>$t > 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$u = 1$</td>
<td>$u = 1$</td>
<td>$u = 1$</td>
<td>$u = 2$</td>
<td>$u \geq 3$</td>
<td>$u \geq 2$</td>
<td>$u \geq 2$</td>
</tr>
<tr>
<td>$s = 1$</td>
<td>64</td>
<td>155</td>
<td>140</td>
<td>140</td>
<td>120</td>
<td>225</td>
<td>210</td>
</tr>
<tr>
<td>$s \geq 2$</td>
<td>120</td>
<td>210</td>
<td>210</td>
<td>225</td>
<td>210</td>
<td>315</td>
<td>315</td>
</tr>
</tbody>
</table>

From the above results, we have

Corollary. Kameko’s conjecture is true for $k = 4$.

